Monday, 24 August 2009

Belemnite Ink Reconstituted

Recently, Dr Phil Wilby and his team were working to extract well preserved remains from a site near Christian Malford in Wiltshire for the British Geological Survey. The outcome of this extensive dig was to recover specimens of belemnite ink which has been reconstituted and used to write with.

This work mirrors the work of Joseph Anning in 1828 when he drew an illustration of a fossil skull of Dimorphodon macronyx using reconstituted belemnite ink from the Jurassic specimens found near Lyme Regis in Dorset.

The new work is significant insofar as it will allow the ink from the Wiltshire specimens to be analysed in detail - something that has not been done before.

The specimens used were classified as Belemnotheutis antiquus and were younger than the Anning Specimens. The ink was reconstituted in the same manner by adding ammonia to liquefy the solid ink sac contents.

The article in The Times reports that - "The specimen is now in the British Geological Survey collection in Nottingham. Part of the ink sac has been sent to Yale University in New Haven, Connecticut, for more detailed chemical analysis. "

Mary Annings Pterodactyle

The Times - 19 August 2009 Article by Simon de Bruxelles

The Times - 22 August 2009 Dave Martill's Comment

Saturday, 15 August 2009

Pterodactyls Alive in 1985

In 1985 the BBC broadcasted an edition of the popular series "Wildlife on One" entitled Pterodactyls Alive. The centrepiece for this program was a dynamic model of Dimorphodon macronyx, nicknamed Didi.
The model was made by Arril Johnson and was commissioned by Aardman Animations in July 1984 as an animation model for the series. The model was made after consulting the leading experts of the day. Kevin Padian, curator of the Museum of Paleontology at the University of California at Berkeley and Hugh Aldridge a bat flight researcher at Bristol University who both contributed ideas to the modelling process.
This interesting model now resides in a display at the Bristol City Museum and Art Gallery on Queens Road, Bristol, UK. It is worth a visit if you are in that part of the world.
These two photographs are mood shots taken by Arril Johnson before the model was handed over to Aardman for the filming of the program content. Both pictures are copyright of Arril Johnson and used with permission. The images are to be included in a rewrite of the Bristol City Museum page on the Pterosaur Database website in the near future.
It is work like this that stimulates discussion in pterosaur research. Kevin Padian proposed ideas about the morphology and locomotion of Dimorphodon which were a little slow to be accepted in some areas. Modelling like this helps to demonstrate the practicality of such suggestions and put these kinds of ideas into context.


Aldridge, H; 1986. Manoeuvrability and ecological segregation in the little brown (Myotis lucifugus) and Yuma (M. yumanensis) bats (Chiroptera: Vespertilionidae). Canadian Journal of Zoology 64:18781882.

Johnson A; 1986, Didi a model with a difference, The Geological Curator Vol 4 ,No 5 page 289-290, September 1985.

Padian K; 1983, Osteology and Functional Morphology of Dimorphodon macronyx (Buckland) (Pterosauria: Rhamphorhynchoidea) based on new material in the Yale Peabody Museum, Postilla (Peabody Museum of Natural History), No.189, 1-44.

Monday, 10 August 2009

Park Hall Country Park

In 1985, Steven Winkworth made the first large scale flying model of Pteranodon, which he flew over the Dorset Coast. The model was used in the BBC television program - Pterodactylus flies. This event was published in New Scientist and in the national newspapers of the time, but outside of the world of pterosaur enthusiasts it is not a well known event.
This weekend I walked at Park Hall Country Park in Staffordshire. Having popped into the visitor centre for an ice cream I was confronted by a painting of the Steven Winkworth flying model on the wall in front of me.
The painting was done by Christopher Guest some 5 years ago, when he worked for the Community Art Team of Stoke-on-Trent City Council, run by Paul Bailey. The wall painting is quite a faithful representation of the model, as can be seen from the photographs. What an unusual find!
This small exhibit room boasts quite a few pterosaurs, like these Quetzalcoatlus soaring in the skies, perhaps over Stoke - who knows.

Park Hall is a site of special scientific interest for its glacial deposits and bedded gravels, as well as having a wide range of different biological habitats in close proximity. Not a place where you would expect to find Pterosaurs.


Winkworth S., 1985, Pteranodon Flies Again, New Scientist, 3 Jan 1985: p32-33.

Winkworth S., 1985, Pteranodon, Flug und Modelltechnik, 359, p990-993. Verlag fur Technik und Handwerk, Baden-Baden.

http://www.steep-steep.blogspot.com/

Sunday, 2 August 2009

Resolving Criorhynchus

In 1861, a new species of pterodactyl was published by Richard Owen. The specimen was the end of a snout with a couple of teeth and 5 tooth sockets. He called this specimen Pterodactylus simus. A few years later he assigned the specimen to a new genus Criorhynchus simus. Harry Govier Seeley also published the specimen as Criorhynchus simus and added other specimens of anterior jaw fragments to this genus.

Several upper jaw snouts were discovered from the Upper Greensand. This is a derived deposit which contains lots of fragmentary remains. The nature of this pterosaur was not well known and analysis of the remains were very speculative at the time.

With no associated remains Criorhynchus was just a series of similar snouts. For many years the consensus was that this was a short snouted large pterosaur with a solid jaw and a very powerful bite.

It was not until 1987 when Peter Wellnhofer described a specimen from Brazil which he called Tropeognathus mesembrinus. This was one of those inspirational discoveries which put the Criorhynchus specimens into context. These species were interpreted as skim feeders with an aqua dynamic snout tip crest.
With increasing fossil evidence, this specimen was later re-assigned to the genus Anhanguera by Kellner and Campos in 1989.

Many pterosaur finds tend to follow this pattern of discovery and rediscovery. This is how science works. There are draws full of unassigned pterosaur specimens in museums around the world waiting for that magic moment when someone makes a discovery or a link that helps to put them into their correct context. Finding such resolutions is a joy.

Owen, R. 1861 Monograph on the fossil Reptilia of the Cretaceous Formations. Supplement III. Pterosauria (Pterodactylus). The Palaeontographical Society, London. (volume for 1858; pp. 1–19 & pls 1–4)

Owen, R. 1874 A Monograph on the Fossil Reptilia of the Mesozoic Formations. 1. Pterosauria. The Palaeontographical Society, London. pp. 1–14 & pls 1–2.

Wellnhofer P; 1987, New Crested Pterosaurs from the Lower Cretaceous of Brasil, Mitteilungen der Bayerischen Statssammlung fur Paleontologie und historische Geologie, 27: 175-186 Munchen

Kellner, A. W. A. & Campos, D. de A. 1990, Preliminary description of an unusual pterosaur skull of the Lower Cretaceous from the Araripe Basin. Atas I. Simp. sobre a Bacia do Araripe e Bacias Interiores do Nordeste, pp. 401–405.

Sunday, 26 July 2009

Was Rhamphorhynchus a skim feeder?

Whilst translating a passage from Peter Wellhofers' work on the Rhamphorhynchoidea, I came across this specimen from the collection of Karl Strobl.


Specimen No. 28: Fig. 24; Plate. 8, Fig. 1-3. Wintershof. Sammlung KARL STROBL, Eichstätt.
Part and counterpart of an entire skeleton with excellent preservation.

The individual is seen from the side; the arms are pushed forwards, the flight fingers in parallel with backbone extend backwards. Impressions of the flight skin and the narrow, lance shaped tail sail are present. The lower jaw extremity is relatively high, blunted in front. The upper edge line of the skull is concave. The front edge of the Infra-temporal opening is formed by the Quadrato-jugale. The cranial length measures 55.5mm.
The gastral skeleton consists of 6 curved bones still in situ; the middle pieces are displaced forwards. The Pubis is widened ventral, so that to the Ischium appears as a bay than rather a round opening. The Prepubis is strengthened centrally and hook-shaped (fig. 10 e).
Within the body cavity is a compressed fish tail and numerous single fish bone fragments indicating the stomach contents. Beside this lies 6-7mm long bananas-shaped small sausages like gastric stones of 1.5mm diameter and with zigzag-shaped textured surface (ref. fig. 44 b).

This specimen clearly shows that this individual had eaten a fish which was swallowed whole, head first. The use of gastric stones to aid mechanical digestion is an indication of a more specialised digestive system. This rhamphorhynchus may have had a gizzard, similar to that seen in birds, or a muscular and thick stomach wall to enable the churning of contents to allow the enzymes and gastric stones to break down the food both chemically and mechanically.

Very few pterosaurs give information about stomach contents, and in this case it leads to a question about fishing methods. Did rhamphorhynchus use a surface skimming technique to fish, or was it a shallow diver. It is impossible to say for certain, but the evidence is compelling. The jaws would certainly be able to scoop up a fish from near the surface of the water. and such a technique would have needed a very precise flying skill and good control of the jaws and neck.

The jaw on this specimen shows an impression of an upturned bony sheath at the end of the lower jaw. Such a structure, being free of teeth, would lend itself to surface skimming. This is a strong clue to the feeding habits of this type of Rhamphorhynchus and the group as a whole.

Wellnhofer, P. 1975 Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Teil II. Systematische beschreibung. Paläontographica A 148, 132–186.

Sunday, 19 July 2009

The Rhamphorhynchoidea

In 1975, Peter Wellnhofer wrote a classic monograph on the Rhamphorhynchoidea. This set of 3 linked works has been the baseline for the study of this group of pterosaurs since then. It is a well organised work with analysis split into skeletal morphology, systematics and Palaeoecology. The texts were originally in German and as far as I am aware, they have not been translated wholesale into English. Recently, I started to translate part 2 for my own use. I would love to publish my translation, which will be a new work, but the original text is not out of copyright until 2025. I can only find paper copy, but I have been told that there is an electronic copy in German. This has eluded me, so I am transcribing and translating from the original text.

Wellnhofer, P. 1975 Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Teil I. Allgemeine Skelletmorphologie. Paläontographica A 148 , 1–33.11 plates.

Wellnhofer, P. 1975 Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Teil II. Systematische beschreibung. Paläontographica A 148, 132–186.


Wellnhofer, P. 1975 Die Rhamphorhynchoidea (Pterosauria) der Oberjura-Plattenkalke Süddeutschlands. Teil III. Palökologie und Stammesgeschichte. Paläontographica A 149, 1–30. 13 plates

The problem in translating any text is the transfer of meaning. There are words in German that can have several possible meanings in English. This also works the other way around. The bulk of the meaning is transferable with a high level of confidence in the result, but there are some areas where the meaning has to be a best guess. This type of translation is often referred to as a Gist Translation. This means that in some cases, the reader may need to refer to the original text to grasp the full meaning of a sentance of passage. It is for this reason that translations should only be attempted from the original documents. Another of Peters texts that I have frequently used is the Handbook of Paleoherpetology, Part 19. This text is also only available in German, so people who are not able to read that language can only look at the wonderful line drawings and be amazed. This is of course, another text that sets the baseline for the study of pterosaurs in general. It is a little dated now, but still a valuable resource. The original text is still available to purchase on the Internet.

Wellnhofer, P. & Khun, O. 1978 Handbuch der Paläoherpetologie. Teil 19. Pterosauria. Stuttgart: Verlag Gustav Fischer.


These texts defined the study of pterosaurs for a whole generation of researchers. It would be beneficial to the subject to have them available on line both in their original German text and in English. The main difficulty is in gaining permission to freely allow access without infringing copyright law. Watch this space!

Tuesday, 7 July 2009

The Frog Mouthed Pterosaurs

Anurognathus ammoni, a pterosaur from the upper Jurassic Solenhofen limestones of Bavaria, was first published in 1923 by Dodderlein. This was recognised as a very unusual small pterosaur, having a very broad and short jaw. Nothing had been seen like this before. The specimen was poorly preserved and the bones were somewhat disarticulated, but the animal clearly has short blunt teeth which were not suited to tearing flesh. "Frog Jaw" was thought to be an insectivore, possibly catching is prey on the wing or on leaves and branches around forested areas.
A second, well articulated specimen of
Anurognathus ammoni was described by Bennet in 2002 and this specimen shows the skeletal anatomy of the pterosaur very clearly.
Another frog mouthed species,
Batrachognathus volans, is known from the Karatau Mountains, Upper Jurassic sediments of Kazakhstan. This species was described by Rjabinin in 1948. The specimen is a partial skeleton including a disarticulated skull which clearly shows a wide jaw. This specimen shows some similarities with Anuroghnathus, but enough differences to classify it as a different species.
Dendrorhynchoides curvidentatus is a Tithonian species that was collected from the Chaomidianzi Formation, Zhangijagou locality from the Lower Yixian Formation near Beipiao City, Western Liaoning Province, China. It was published in 1998 and is one of several fine specimens to come out of this part of China. This is a very good fossil of this type of pterosaur and it has been restored after a preparator doctored the fossil in an attempt to make it more salable.
Jaholopterus ninchengensis is a compete Anurognathid with some soft part preservation from the Lower Yixian Formation at Nincheng, Inner Mongolia. This specimen is known as the Nincheng Rehe Pterosaur and is in the Institute of Vertebrate Paleontology and Paleoathropology in Beijing. The specimen caused quite a stir when it was published in 2002.

These 5 specimens are the major contingent of the classification Anurognathidae. There are a few fragmentary remains, like a jaw fragment from the Middle Jurassic Stonesfield Slate which is in The National Museum of Wales, Cardiff. The Anurognathids were probably quite widespread in distribution, but I suspect that they were forest dwelling pterosaurs, living in places where fossilization is a rare process. The scientific community is probably quite lucky to have this many specimens of this pterosaur lineage to work with.


Döderlein L., 1923, Anurognathus ammoni, ein neuer Flugsaurier. Sitzungsberichte der Bayerischen Akademie Wissenschaften, math.-naturwiss. Klasse, 1923, München. Pp. 117- 64, figs. 1-7.

Bennett S. C., 2002, A second specimen of Anurognathus from the Solnhofen Limestone of South Germany. Journal of Vertebrate Paleontology 22 (supp. 3), 36A

Rjabinin A. N., 1948, Remarks on a flying reptile from the Jurassic of the Kara-Tau, Akademia Nauk, Paleontological Institute, Trudy, 15(1): 86-93, 1 plate, Moscow and Leningrad.

Ji S.-A. and Ji Q., 1998, A new fossil pterosaur (Rhamphorhynchoidea) from Liaoning. Jiangsu Geology 22(4): 199-206.

Wang X., Zhou Z., Zhang F. and Xu W., 2002, A nearly complete articulated rhamphorhynchoid pterosaur with exceptionally well-preserved wing membranes and "hairs" from Inner Mongolia, Northeast China. Chinese Science Bulletin vol. 47(3), pp. 226-232.